Friday, July 03, 2009

Variasi genetik Virus Hepatitis C dan implikasinya pada terapi dan diagnostik

Struktur virus hepatitis C
Virus Hepatitis C (hepatitis C virus, HCV) adalah virus berenvelop dan bermateri genetik RNA dan menyebabkan hepatitis C. Berdasarkan profil materi genetiknya, HCV digolongkan menjadi enam genotip yaitu 1, 2, 3, 4, 5, dan 6. Virus ini menyerang hati dan menyebabkan hepatitis C akut dan hepatitis C kronis. Strukturnya terdiri atas envelop lipid yang mengandung glikoprotein envelop E1 dan E2, protein kapsid C yang membungkus materi genetiknya, dan protein non-struktur (tidak diperlihatkan).

Genom HCV

HCV mempunyai genom RNA positif dengan ukuran 9,5 kilo basa. Genom terdiri atas daerah yang tidak ditranslasi terletak pada ujung 5’ dan 3’ (5’ dan 3’ non-translated region, NTR). Setelah 5’ NTR berlokasi gen yang mengkode protein struktur yang terdiri atas nukleokapsid C (p22), glikoprotein envelop E1 (gp35) dan E2 (gp70), gen pengkode protein non-struktur yang terdiri atas NS1 (p7), NS2 (p23), NS3 (p70), NS4 (p8), NS4B (p27), NS5a (p56/58) dan NS5B (p68). NS2 adalah suatu protein transmembran, NS3 adalah suatu metalloprotease, protease serin, RNA helikase, NS4a dan NS4b adalah kofaktor, NS5A adalah protein yang menentukan resistensi terhadap interferon, dan NS5A adalah suatu RNA polimerase. Baik protein struktur dan protein non-struktur dihasilkan sebagai poliprotein yang kemudian mengalami modifikasi pasca translasi yaitu pemotongan dengan protease.
Siklus hidup HCV

Partikel virus HCV (virion) mengenali sel yang peka terhadap infeksi HCV, terutama adalah sel hepatosit. HCV mengempel melalui GAG dan reseptornya, kemudian HCV akan diinternalisasi untuk masuk ke dalam endosom. Virion mengalami uncoating untuk melepaskan RNA virus. Karena polaritas RNA HCV adalah positif, maka RNA tersebut berfungsi sebagai mRNA dan dapat ditranslasi di dalam sitoplasma untuk menghasilkan poliprotein. Poliprotein kemudian akan dipotong dengan protease virus dan RNA polimerase, suatu RNA polimerase yang menggunakan RNA sebagai substrat (RNA-dependent RNA polymerase) mengkatalisis pembentukan RNA negatif menggunakan RNA positif sebagai cetakan dan menghasilkan RNA positif menggunakan RNA negatif yang baru dibentuk sebagai cetakan. Virion dirakir di membran retikulum endoplasma dimana protein E1 dan E2 disisipkan pada membran tersebut, protein virus lainnya dan materi genetiknya dikemas kemudian dilepaskan ke luar sel melalui retikulum endoplasma dan badan Golgi. Replikasi virus dikatalisis oleh RNA polimerase yang banyak mengintroduksi kesalahan pada saat replikasi dengan frekuensi kesalahan 1.4 – 1.9 x 103 nukleotida/tahun, sehingga HCV banyak mengalami mutasi.

Variasi genetik HCV

HCV mempunyai variasi genetik yang sangat tinggi dan sampai saat ini diketahui HCV mempunyai 6 genotipe dengan kemiripan di dalam genotipe adalah 91%. Diketahui pula, HCV mempunyai lebih dari 50 subtipe dan kemiripan diantara genotipe adalah 66-69%. Klasifikasi genotipe didasarkan pada urutan nukleotida gen NS5B dan 5’NTR. Pada individu yang terinfeksi juga terdapat variasi nukleotida yang disebut dengan ‘quasispecies’.

Reverse-transcription Polymerase Chain Reaction untuk HCV

Materi genetik HCV adalah RNA, oleh karena itu untuk mengamplifikasi genom HCV maka RNA HCV diubah dulu menjadi DNA melalui transkripsi balik yang dikatalisis oleh reverse trancritptase (RTase). DNA yang dihasilkan disebut dengan cDNA (complementary DNA) dan kemudian diamplifikasi dengan PCR. Produk PCR dapat dideteksi menggunakan pelacak yang spesifik untuk HCV. RT-PCR dapat digunakan untuk penegakan diagnosis HCV, pemantauan terapi dan indikator penyembuhan. Seorang penderita hepatitis C kronis yang telah diindikasikan untuk diterapi harus ditentukan terlebih dahulu kandungan RNA HCVnya menggunakan RT-PCR. Selama terapi, kandungan RNA HCV dipantau untuk mendapatkan informasi apakah pasien responsif terhadap pengobatan atau tidak. Breakthrough dapat diterjadi pada saat terapi dengan kenaikan RNA HCV dan ini disebabkan karena telah munculnya resistensi virus terhadap obat yang digunakan. Penentuan kandungan RNA HCV juga disarankan untuk dilakukan mengetahui terjadinya relapse yaitu peningkatan kandungan RNA HCV setelah terapi selesai

Pentingnya genotipe HCV pada terapi

Terapi hepatitis C sangat ditentukan oleh genotipe HCV. Sampai saat ini diketahui bahwa genotipe 1 adalah genotipe yang paling sulit diterapi. Sensitivitas dan ketahanan terhadap interferon ditentukan oleh NS5A. Jika interferon alfa mengenali sel yang peka terhadap interferon, maka akan dihasilkan PKR dimana PKR berikatan dengan eIF-2-P yang akan menurunkan efisiensi translasi dan sintesis protein. Namun, NS5A dari HCV genotipe 1 akan berikatan dengan PKR sehingga tidak dapat mengikat eIF-2. Penentuan genotipe dapat dilakukan dengan RT-PCR yang dilanjutkan dengan hibridisasi menggunakan pelacak spesifik genotipe.

Protein NS5A mempunyai ukuran 447 asam amino dan protein mengandung daerah penyisipan membran, situs hiperfosforilasi, pengikatan PKR yang di dalamnya mengandung daerah penentu kepekaan interferon (interferon sensitivity determining region, ISDR), sinyal lokalisasi inti dan daerah V3. Mutasi pada ISDR telah diketahui bertanggung jawab terhadap resistensi terhadap interferon dan mutasi pada daerah V3 bertanggung jawab terhadap responder.

Pustaka

1.Guillou-Guillemette H. L., S. Vallet, C. Gaudy-Graffin, C. Payan, A. Pivert, A. Goudeau F. and Lunel-Fabiani, 2007, Genetic diversity of the hepatitis Cvirus: Impact and issues in the antiviral therapy, World J Gastroenterol; 13(17): 2416-2426.
2.Kato N.,T. Nakamura, H. Dansako,K. Namba, K. Abe, A. Nozaki, K. Naka, M. Ikeda and K. Shimotohno, 2005, Genetic variation and dynamics of hepatitis C virus replicons in long-term cell culture, J. Gen. Virol, 86, 645–656
3.Halfon P., P. Trimoulet, M. Bourliere, H. Khiri, V. De Le´Dinghen, P. Couzigou, J. M. Feryn, P. Alcaraz, C. Renou, H. J. A. Fleury, and D. Ouzan, 2001, Hepatitis C Virus Genotyping Based on 5’ Noncoding Sequence Analysis (Trugene), J. Clinic microbiol. 39(5): 1771–1773.
4.Ross R. S., S. O. Viazov, C. D. Holtzer, A. Beyou, A. Monnet, C. Mazure, and M. Roggendorf, 2000, Genotyping of Hepatitis C Virus Isolates Using Clip Sequencing, J. Clin Microbiol, 38(10): 3581–3584
5.Simmonds P., 2004, Genetic Diversity and Evolution of Hepatitis C Virus – 15 years on, J. Gen. Virol. 85: 3173–3188

Basic Principles of Carbohydrate-based Therapeutics and Vaccines

In the recent years, there has been an increasing interest in the biological roles of carbohydrates in many disease progresses either in infectious or non-infectious illness. In infectious diseases, carbohydrates play roles in adhesion and survival in human body. Prevention of pathogen adhesion is an attractive strategy in the prevention of infection. Bacteria have developed a number of adhesion mechanisms commonly targeting surface carbohydrate molecules. Our understanding on human glycome and its relation to bacterial adhesion will lead to the discovery of novel substances for therapeutics and prevention. Several human pathogens display carbohydrate structure on their surface, the most important is capsule. This structure renders the pathogen to resist phagocytosis; therefore encapsulated pathogens are more virulent than non-capsulated counterparts. Capsules have been used for vaccine targets and capsular vaccines have been successfully decreased the incidence of some infectious diseases caused by encapsulated pathogens. However, certain pathogens develop a strategy to avoid human defence mechanism by producing different types of capsular polysaccharides. These diverse carbohydrates building the capsule determine the pathogen serotypes. This phenomenon makes vaccine design more troublesome; therefore a mixture of various capsular polysaccharides is needed to make effective vaccine. In this case, knowledge on predominant capsule serotype is required to select which polysaccharides suitable for vaccine development in a certain region. Carbohydrate also plays a crucial role in malignant diseases. In these diseases, carbohydrates are actually altered self antigens and for unknown reasons, the body immune response does not recognize them. The development of vaccines for cancer treatment has been more challenging than that for infectious diseases, mainly due to the difficulty to break the body’s immunological tolerance to the antigen. Therefore, methods to enhance the immunological recognition and induction of immunity in vivo are being investigated. For therapeutics purpose, carbohydrate acts as anticoagulant agents. Current anticoagulants can be either direct or indirect inhibitors of clotting enzymes. Despite their success, they suffer from the risk of serious bleeding. Current status in this field is to discover or design safer and more affective anticoagulants that act through antithrombin pathway of anticoagulation. New molecules can be classified into antithrombin and its mutants, natural polysaccharides, synthetic modified heparins and heparin-mimic, synthetic oligosaccharides and synthetic non-sugar antithrombin activators. In conclusion, carbohydrates are naturally occurring substances that function in diseases processes and the interference of its action can be used as targets therapeutic and vaccine development.

The roles of carbohydrates?

Carbohydrates have a number of key roles in our cells. They play important role in intracellular recognition and surface markers, in biomolecular processes which are involved in cell-cell contact. The cell-cell contacts are involved in cellular, bacterial and viral adhesion. In order for the bacteria and virus to establish productive infection, they have to adhere to epithelial cells otherwise they will be cleared by body defense mechanisms. Carbohydrate moeities in glycoproteins also affect protein solubility and protein folding which is required for proper activity. This presentation will focus only in intracellular recognition and surface maskers and biomolecular processes.

Carbohydrates and carbohydrate-acting enzymes in disease?

Why are carbohydrates and carbohydrates-acting enzymes important in the initiation, development and progression of a number of diseases? Many infectious diseases caused by bacteria, viruses, fungi and many others are mediated by glycosylation. The initial interaction between pathogens and host cells are mostly mediated by glycoprotein and or carbohydrate-binding proteins (lectins). Altered carbohydrate processing is also responsible for several extremely debilitating and eventually terminal diseases such as diabetes, arthritis and several organ disorders such as liver disease. Recently, altered carbohydrates displayed only in cancer cells have been reported and this is due to improper or abnormal cell surface glycosylation. A number of carbohydrate-acting enzymes such as glycosidases, glycosyltransferases and N-glycanases are important in carrying out a wide spectrum of cellular processes and also responsible for the expression of altered carbohydrate at the surface of cancer cells.

Carbohydrates and diseases?

Changes in carbohydrate chemistry at the cell surface or in metabolic pathways are key features of a wide spectrum of diseases. Here are a number of examples for infectious diseases, cancer, diseases of major organs and auto-immune disorders. Since carbohydrate to be hydrophilic in nature, most of them are located at the cell surface and they serve for molecular recognition. There are two different substances carrying carbohydrate moeities located at the cell surface namely glycolipids and glycoproteins. Cell-surface carbohydrates involve in molecular recognition for viruses, bacteria and toxins with host cells which are important in infectious diseases. They also are important for cancer cell recognition, hormone, enzyme and antibody mechanism of actions. In my presentation today, I will only focus in carbohydrate-mediated molecular recognition in virus, bacteria, and cancer cells.

Carbohydrate-based therapy

Since the mechanisms of several carbohydrate-mediated diseases have been revealed, carbohydrate-based therapy is recently being developed. The basis of this therapy are disruption of carbohydrate-lectin interactions which is crucial for the initiation or development of specific diseases, identification of unique carbohydrate antigens to a disease state for vaccine development or we can deliver an monoclonal antibody targeted to these unique antigens, inhibition of enzymes that are responsible for biosynthesis of disease-associated or altered carbohydrate, replacement of carbohydrate-processing enzymes that are absent in diseased cells and application of carbohydrate and lectin interactions to deliver drug specifically to diseased cells. Due to time constraints, I will only discuss several of this strategy.

When a bacterium enters our body, it will adhere to our cells and colonize our host tissue to establish infection. If the adhesion process is mediated by carbohydrate-carbohydrate interaction, it is possible to interfere the adhesion process by adding decoy carbohydrates. These decoy carbohydrates will bind to bacterial adhesins preventing the bacterium to access its receptor on the cell surface of our cells. The bacterium then will cleared by our defense mechanisms and cannot initiate an infection. Some bacterial pathogens utilize carbohydrate for their adhesion process to our cells namely Escherichia coli, Neisseria gonorrhoae, Mycobacterium tuberculosis, Salmonella and Staphylococci.

Carbohydrates as anti-infective substances

Decoy carbohydrates are also called anti-infective agents. Examples of anti-infective agents are presented in this slide. Some of them are isolated from human milk oligosaccharides and they are good in aborting infection of Streptococcus pneumoniae and influenzae virus. A company namely Synsorb Biotech produced a structure that targets two bacterial toxins from important strain of E. coli O157:H7 (causing hemorrhagic colitis) and Clostridium difficile (causing diarrhoea). These agents underwent phase III clinical trial, although these trials have now been discontinued.

Role of carbohydrate in viral release from host cell?

Another example is the use of carbohydrate to inhibit viral release from host cell. Influenzae A virus has neuraminidase that cleaves sialic acid at the surface of infected cells. The cleavage is necessary in order for the virus to release from infected cells. A number of neuraminidase inhibitor are now being produced by several pharmaceutical companies and used as anti-influenzae drugs.

Carbohydrate antigens in cancer

As mentioned earlier that carbohydrate antigens are important in cancer development. These carbohydrate antigens can be either glycolipids or glycoproteins. Mostly, they are unpregulated or altered and displayed on the surface of cancer cells. This self altered carbohydrate is due abnormal glycosylation. Since only cancer cells express altered carbohydrates, then these substances can be targeted for vaccination.

Carbohydrate antigens as vaccine targets for cancer

Table 1 illustrates some carbohydrate antigens as targets for vaccine development. Some of the carbohydrates are common to cancer cells such as GM2, some are produced by several cancer cells for instance globoH. Structure of monovalent vaccine Globo H and the trimer formation for Tn vaccine are depicted in Figure 1.

Carbohydrate antigens in cancer

These two figures below show carbohydrate that are specific for cancer cells and the figure below highlights a vaccine consisting of three different antigens, globo H, Lewis and Tn. Thiis vaccine is called multivalent vaccine.


Status of experimental vaccine therapeutics

This table below presents some experimental vaccine therapeutics for a number of cancers and their status as of the year of 2004.


Role of heparanase in tumor cell invasion and angiogenesis

Heparanase is a Heparan Sulfate-specific Endo-beta-D-glucuronidase and it cleaves heparan sulfate proteoglycans (HSPGs) which is expressed by mammalian cells on cell surfaces and deposited in extracellular matrices including the basement membrane. Cell surface HSPGs play a role as receptors for adhesion molecules and growth factors; therefore they are implicated in cell adhesion, migration, differentiation and proliferation. One mechanism of metastasis of cancer cells is due to cleavage of HSPG by heparanase produced by cancer cells. Heparin is a carbohydrate-based anticoagulant inhibits heparanase, however, anticoagulant activity will cause unwanted effects that is bleeding. Now, the researchers synthesize a heparin derivative that is free of anticoagulant activity.

References

Vliegenthart J., 2006, Carbohydrate based vaccines, FEBS Letters, 580(12): 2945-2950

Roy R., 2004. New trends in carbohydrate-based vaccines. Drug Discovery Today: Technologies. 1(3): 327-336.

Slovin S. F., S. J Keding and G. Ragupathi, 2005. Carbohydrate vaccines as immunotherapy for cancer. Immunology and Cell Biology 83: 418–428

A Liakatos, H Kunz. 2007. Synthetic glycopeptides for the development of cancer vaccines. Current Opinion in Molecular Therapeutics 9:35-44

Tuesday, May 12, 2009

Real-time PCR untuk diagnosis dan pemantauan terapi hepatitis B

Hepatitis B adalah infeksi yang disebabkan oleh virus DNA dan disebut virus hepatitis B (HBV). Penderita hepatitis B, pada awalnya akan mengalami hepatitis B akut yang berlangsung maksimum selama 6 bulan. Jika hepatitis B berlangsung lebih dari 6 bulan, maka disebut dengan hepatitis B kronis. HBV adalah virus bermateri genetik DNA, namun replikasi di dalam sel hati melibatkan molekul perantara yaitu RNA sehingga HBV mengalami kesalahan replikasi yang menyebabkan mutasi lebih tinggi daripada virus bermateri genetik DNA lain. Penderita hepatitis B akut akan sembuh dengan sendirinya karena sistem pertahanan tubuh penderita dapat mengatasi keberadaan HBV di dalam tubuhnya, sehingga HBV dieliminasi dengan baik. Namun, penderita hepatitis B kronik harus diobati dan pengobatan terdiri atas interferon dan antivirus.

Hepatitis B akut ditandai dengan keberadaan materi genetik HBV (ini marka yang pertama kali muncul), diikuti dengan munculnya HBsAg, DNA polimerase, kemudian HBeAg (marka yang menunjukkan bahwa HBV sedang giat berkembang biak di sel hati) dan anti HBcAg IgM (antibodi terhadap HBcAg). Penyembuhan akan terjadi dengan munculnya anti HBeAg dan hilangnya HBeAg, anti HBsAg dan hilangnya HBsAg serta antiHBcAg IgG. Anti HBcAg dapat berada di dalam darah untuk waktu lama.

Hepatitis B kronis ditandai dengan keberadaan HBsAg dan HBeAg dalam waktu yang lama. Anti HBcAg IgM biasanya sudah tidak dapat dideteksi pada minggu ke36 setelah pemaparan terhadap HBV. Total anti HBcAg juga dapat dideteksi pada waktu lama. AntiHBeAg dapat muncul untuk waktu yang lama dan dengan demikian HBeAg dieliminasi dari dalam tubuh, sehingga pasien menjadi HBeAg negatif. Pada kondisi ini, DNA HBV dapat dideteksi di dalam darah penderita dengan kandungan yang tinggi. Namun, pada sejumlah penderita, umumnya berjenis kelamin pria, HBV dapat mengalami mutasi sehingga partikel virus tidak mampu menghasilkan HBeAg walaupun HBV berkembang biak dengan pesat. Pasien seperti ini disebut dengan penderita hepatitis B kronis HBeAg negatif.

Baru-baru ini telah dikembangkan suatu metode yang dapat mendeteksi keberadaan materi genetik HBV di dalam serum atau plasma penderita dan metode tersebut adalah real-time PCR. Metode ini menawarkan sensitifitas dan spesifitas yang tinggi. Real-time PCR dapat digunakan untuk menegakkan diagnosis hepatitis B (bersama dengan uji imunologi untuk mengetahui keberadaan marka HBV lain), pemantauan keberhasilan (atau kegagalan) terapi, pemunculan fenomena "breakthrough" dan relapse.

Pasien hepatitis B kronis harus dipantau kandungan DNA HBVnya di dalam darah, karena kandungan DNA HBV yang tinggi meningkatkan resiko munculnya kerusakan jangka panjang pada hati pasien hepatitis B yang parah yaitu munculnya fibrosis, sirosis dan kanker hati. Fibrosis adalah penumpukan jaringan berserat dan keras dalam hati. Sirosis adalah kondisi yang ditandai dengan adanya jaringan parut permanen pada hati.

Salah satu cara menentuka keberadaan dan kandungan DNA HBV di dalam darah pasien adalah dengan real-time PCR. Bagaimana melakukan real-time PCR? Pertama-tama tentu materi genetik HBV harus diisolasi dan dimurnikan dari plasma atau serum penderita. Kemudian materi genetik tersebut diperbanyak di dalam suatu lightcycler dan jumlah materi genetik hasil perbanyakan dipantau menggunakan suatu reagen spesifik HBV yang ditandai dengan fluoresense. Penanda ini akan melaporkan setiap saat berapa jumlah materi genetik yang telah diamplifikasi sehingga real-time PCR dapat digunakan untuk mengkuantitasi materi genetik HBV yang terkandung dalam spesimen biologi seorang pasien.

Yang menjadi fokus untuk pengobatan adalah pasien hepatitis B kronis. Untuk pasien HBeAg positif, terapi disarankan bila DNA HBV > 20.000 IU/ml dan nilai ALT > 2 x nilai normal (nilai normal untuk pria <> 2000 IU/ml dan ALT > 2 x nilai normal. Skema pemeriksaan selanjutnya sama dengan untuk pasien dengan HBeAg positif di atas.

Sunday, February 15, 2009

MY PERSONAL STORY

Cerita pribadiku tertulis dalam sebuah kitab yang dituliskan dengan 4 huruf, yaitu AGTC. Bukuku panjangnya 3 milyar huruf (berapa halamankah itu) terdiri atas 23 bab dan tiap bab ada 2 yang mirip tetapi tidak identik. 1 bab mengandung informasi yang menyatakan bahwa saya adalah wanita (sayang dulu saya gak bisa milih, karena kalau boleh milih, saya lebih suka jadi laki2). 22 bab berisi informasi yang menyatakan saya adalah seperti diriku dengan fisik dan sifat seperti yang ada pada diriku. Informasi ini kemudian diterjemahkan menjadi sekitar 30.000 hasil ekspresi dari informasi dan ini terdiri atas 20 huruf. Informasi yang ada dalam tubuhku ini tidak bisa aku pilih, melainkan diberikan oleh kedua orang tuaku (kalau saya boleh milih mungkin saya sudah pilih sehingga saya menjadi wanita yang cantik dan sudah jadi penari atau bintang (bukan binatang) film. O ya saya lupa, informasi yang hurufnya ada 4 itu (AGTC) dibacanya tiga-tiga. Ada contoh kalimat dalam bahasa Inggris yaitu "the big fat cat ate the big fat rat". Nah gitu contonya walaupun gak berapa mirip karena susah banget untuk mencari kalimat yang hanya terdiri atas 4 huruf dan lagi dibaca tiga-tiga susah (aku dah nyari ber tahun2 tetapi belum juga nemu). Ya, sudahlah ceritaku cukup sekian aja dulu ya?

Monday, July 31, 2006

Master on pharmaceutical biotechnology

Master on Pharmaceutical Microbiology, School of Pharmacy, Institut Teknologi Bandung

Jl. Ganesha No. 10 Bandung 40132 Phone/fax: +62222504852/+62222534125

This master program was initiated in 1999, focuses in molecular-based microbiology/biotechnology related to pharmaceutical field. Many pharmaceutical products are produced by recombinant DNA technology or hibridoma technology. Some examples are therapeutic proteins (insulin, interleukin, interferon, tissue plasminogen activator, growth hormon), vaccine (Hepatitis B vaccine), detection kit (Polymerase Chain Reaction, Reverse Transcriptase-Polymerase Chain Reaction, Transcription-mediated Amplification, branch-DNA, sekuensing) and monoclonal antibody (for cancers). Several products will be available on the market in the near future i.e. gene therapy, protein / DNA microarray, DNA vaccine, and many others. To anticipate this fast moving progress in pharmaceutical biotechnology, we offer courses to challenge that as follow:

Mandatory courses:

Semester I: Cellular and Molecular Biology of Microbes (3 credits); Microbial Biochemistry (3 credits); Analytical Microbiology (3 credits); Molecular Pharmacology (3 cridts).

Semester II: Microbial Genetics (2 credits lecture and 1 credit lab work); Molecular Immunology (3 credits); Physiology of Microbes (3 credits)

Semester III: Master research I (proposal writing) and elective courses

Semester IV: Master research II (research), elective courses, seminar and comprehensive examination

Elective courses:
Recombinant DNA Technology (2 credits); Molecular Pathogenesis (2 credits); Industrial Microbiology (2 credits); Immunology Products (2 credits); Pathophysiology (2 credits); Virulece of Bacterial Pathogens (2 credits).

Students are required to actively participate in the classes by doing presentations, literature searching from data bases via internet, using computer programs for genome, nucleic acid and protein analyses. These activities accommodate students' interests. By this method, students are trained to develop their knowledge gained in the class so they can optimally obtain benefit from unlimited scientific information.

Research topics

Molecular Biology of Streptococcus pyogenes: molecular mechanisms of pathogenesis, development of vaccine and recombinan therapeutic proteins

Molecular Biology of Hepatitis B Virus (HBV): molecular study of vaccine escape mutants, subtyping, genotyping and antiviral resistancy

Exploration of Indonesian Microbial Biodiversity for therapeutic use using molecular approaches

If research funding is available, students with good grades will obtain opportunity to do their master research through this funding scheme.

When conducting their master research projects, students are required to attend lab meeting on friday 10:00 - 13:00 every two weeks. Besides presenting and discussing research results, students and research assistants are also required to present and discuss interesting topics related to pharmaceutical biotechnology to widen their knowledge.

Participants

So far our students are from Department of Pharmacy, Faculty of Medicine, Department of Biology, Department of Chemistry, LIPI, BPPT, BPOM and PPOMN and from individual.

Alumni

Some alumni are accepted in doctoral program oversease.

More info?

School of Pharmacy, ITB LabTek VII, Jalan Ganesa No. 10 Bandung 40132 Phone/Facimile: 022-250-4852 for administration info or sending email to Debbie S. Retnoningrum, PhD (retnoningrum@indo.net.id) for scientific info.

 

Laboratory Safety Training

Together with Dr. Ir. Sri Harjati Suhardi and Dra. Endang Srieatimah, I am conducting a training on Laboratory Safety at PT Biofarma, Bandung, Indonesia for 6 weeks in June - August 2006. The contents of this training are regarding:
a. Undertanding of various hazard.
b. Self Evaluation for working with pathogenic agents.
c. Accident response.
d. Audit.
In this training, I give short lectures about bacterial and viral pathogens as well as prion to give awarness to the participants how dangerous they are. However, if they follow the safety guideline they can avoid laboratory-acquired infections. Most of the viruses including HIV are easyly to be decontaminated as long as they know how to do that. Even prion can be destroyed properly. They can obtain all of this information from Material Safety Data Sheet of each pathogen.

Thursday, January 19, 2006